3.252 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=134 \[ -\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

2*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/2*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+
c))^(3/2)-5/4*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3816, 4023, 3808, 206, 3801, 215} \[ -\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - (5*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*
x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Sec[c + d*x]^(3/2)*Sin[c + d*x
])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}-2 a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{a^2}-\frac {5 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d}+\frac {5 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {2 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 220, normalized size = 1.64 \[ \frac {-2 \sin (c+d x) \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+5 \sqrt {2} \tan (c+d x) \sec (c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+5 \sqrt {2} \tan (c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )-2 \tan (c+d x) (\sec (c+d x)+1) \sin ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )-10 \tan (c+d x) (\sec (c+d x)+1) \sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )}{4 d \sqrt {1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 5*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqr
t[1 - Sec[c + d*x]]]*Tan[c + d*x] + 5*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[
c + d*x]*Tan[c + d*x] - 2*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])*Tan[c + d*x] - 10*ArcSin[Sqrt[Sec[
c + d*x]]]*(1 + Sec[c + d*x])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

fricas [B]  time = 0.81, size = 559, normalized size = 4.17 \[ \left [\frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 4 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 +
 2*cos(d*x + c) + 1)) + 4*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x +
c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(c
os(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*
x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(5*sqrt(2)*(cos(d*x + c)^2 +
2*cos(d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c)
)/(a*sin(d*x + c))) + 4*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) - 2*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^
2*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 1.49, size = 240, normalized size = 1.79 \[ \frac {\left (2 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )-2 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )+\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-5 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )-1\right )}{4 d \sin \left (d x +c \right )^{3} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d*(2*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c))*2^(1/2))*sin(d*x+c)-2*2^(1/2)*
arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c))*2^(1/2))*sin(d*x+c)+(-2/(1+cos(d*x+c)))^(1/2)*c
os(d*x+c)-5*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-(-2/(1+cos(d*x+c)))^(1/2))*(a*(1+cos(d
*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)*(-2/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^3*(cos(d*x+c)^
2-1)/a^2

________________________________________________________________________________________

maxima [B]  time = 1.49, size = 2122, normalized size = 15.84 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/4*(4*(sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/4*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*
c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log
(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*
x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2
))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*co
s(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) +
sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt
(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2
*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 5*(cos(2*d*x + 2*c)^2 + 4*(cos(2*d*x + 2*c) + 1)*cos(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(2
*d*x + 2*c)^2 + 4*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(2*d*x + 2*c) + 1)*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c))) + 1) + 5*(cos(2*d*x + 2*c)^2 + 4*(cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 4*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(2*d*x + 2*c)^2 + 4*sin(2*d*x +
 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c)))^2 + 2*cos(2*d*x + 2*c) + 1)*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/4*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*cos(
1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - 4*(cos(2*d*x + 2*c) + 2*cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1)*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 8*cos(1/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(2*d*x +
2*c) + 1)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 8*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))/((sqrt(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d*x +
 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*a*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))^2 + 2*sqrt(2)*a*cos(2*d*x + 2*c) + 4*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sqrt(2)*a)*sqrt(a)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(5/2)/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________